News
Home
Harbin Institute of Technology

The First Swimming Liquid Metal Nanomachine is Developed

Updated: 2019/01/02

Translated by: Wang Min

The world’s first shape-transformable and fusible swimming liquid metal nanomachine is developed by Guo Bin and He Qiang, professors from State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (HIT) . The research was published in ACS Nano (IF: 13.7), an internationally renowned journal, titled “Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine”.

Alloyed gallium with a temperature melting point of 29.8℃ stays in a liquid state at room temperature. In effect, the liquid gallium and its alloy are characterized with various excellent properties such as high boiling point, low viscosity, good thermal conductivity, electrical conductivity, liquidity and biocompatibility. The research in applying liquid gallium and its alloy to robotics, biomedicine and wearable devices is on the rise, especially after the liquid metal robot “T-1000” in the film Terminator shows its potential to freely transform, self-repair and imitate any object which is of similar size. However, there is no report on nanoscaled liquid metal machines.

Fortunately, taking liquid gallium as raw material, the research team of HIT has for the first time developed the rodlike liquid gallium nanomachine with asymmetric structure by nanoporous template plastic forming technique. This nanomachine is controllable in length and diameter, with a minimum diameter of 200 nanometers. According to the research, the rodlike liquid metal nanomachine  displays a core-shell structure composed of a gallium core and a gallium oxide shell. Due to the pre-melting effect of the nanoscaled gallium, the core is able to remain in a liquid state even at room temperature, whereas the outer gallium oxide shell can maintain a rod-like structure. Meanwhile, it is also found that the liquid metal nanomachine with stable full-wavelength fluorescence can be used as a fluorescent probe for precise diagnosis and treatment of diseases. Moreover, under the action of external ultrasonic field, the liquid metal nanomachine like swimming bacteria is able to perform self-propelled motion in the fluid at a speed of 23 microns per second. The nanomachine can also target cancer cells actively. Then after it enters the cancer cell, its shell tends to be dissolved while its core tends to be deformed, fused and completely degraded under acidic conditions. Similar as T-1000 with the ability of transformation and fusion, the liquid metal nanomachine will provide new insights into the design, manufacture and biomedical applications of next-generation micro-nano machines.

Links to the source article:https://pubs.acs.org/doi/10.1021/acsnano.8b05203

image001.jpg

 

 


MORE NEWS

Professor Leng Jinsong was Elected as the Fellow of American Association for the Advancement of Science

The Second Session HIT Ice & Snow Cultural Festival was Opened

Winter Games was Held in the HIT Brings the Campus Happy Times

Principal Zhou Yu Attended The 9th Joint Conference of the University Alliance of Excellence and the Sino-British University Engineering Education and Research Alliance for Principals

“Hello, Harbin” 2018 ASRTU Youth Winter Festival held at HIT

A new attempt on the innovative practice of the overseas students——the establishment of the Engineering Innovation Practice Base of the overseas students of Harbin Institute of Technology

Two Students from HIT Participated in the Global Promotion Activities of Heilongjiang Province

Our School Attended the APSCO 10th Anniversary High-Level Forum and Signed the Cooperation Agreement

Professor Han Xiaojun from the School of Chemical Engineering and Chemistry was elected to the Royal Society of Chemistry

Successfully Developed by HIT Professors, the World's First Artificial Two-engine Mode Micro/nanosized Machines are Expected to Have a Wide Range of Practical Applications.